
Public Parameters PP = (p, g).

 p= 268435019; g=2;

For Poster Report (PR) presentation 2 lectures will be dedicated:
20-th of May, at 13:30, in 509 class.
27-th of May, at 13:30, in 509 class.
During this time you can pass the Mid-Term Exam (MTE) if it is not passed yet.

PR requirements you can find in my Google drive:

https://docs.google.com/document/d/1IPzwEVVmvnObQoJPRP9GDUiHccEGWgMw/edit?
usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true

PR Topics are presented in my Google drive:
https://docs.google.com/document/d/1B6gavCsgZXcCRssFZEWLVfzaO_IPbC5o/edit?
usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true

Please select a topic you wish and label this selection in the list.

During the exam you must solve 5 problems from
https://imimsociety.net/en/14-cryptography
And oral answer to the 1-2 questions concerning these 5 problems.

Information Confidentiality, Integrity and Authenticity. Person Identification.

 Information
 Encryption/Decryption; Signing/Verification
Person Identification using Zero Knowledge Proof - ZKP

A: ZKP of knowledge x:

PrKA = x = randi(p-1)
PuKA = a = gx mod p
1.Computes commitment
t for random number i:
 i=randi(p-1)
 t=gi mod p
3.Computes response res:
res=i+xh mod (p-1)

B: PuKA = a

2.Generates challenge h:
h=randi(p-1)

Verifies:

gres=tah mod p

h

t, a t, a

res res

h

Time

t

h

res

Interactive Zero Knowledge Proof - ZKP

`111_012 Mini-https v-2

 `111_012 Mini-https v-2 Page 1

https://docs.google.com/document/d/1IPzwEVVmvnObQoJPRP9GDUiHccEGWgMw/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/document/d/1IPzwEVVmvnObQoJPRP9GDUiHccEGWgMw/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/document/d/1B6gavCsgZXcCRssFZEWLVfzaO_IPbC5o/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://docs.google.com/document/d/1B6gavCsgZXcCRssFZEWLVfzaO_IPbC5o/edit?usp=sharing&ouid=111502255533491874828&rtpof=true&sd=true
https://imimsociety.net/en/14-cryptography

PrKA = x = randi(p-1)
PuKA = a = gx mod p

PuKA = a

PrKB = y = randi(p-1)
PuKB = b = gy mod p

Bob: let M'=M.
1.Computes h=H(M||r).
>> h=concat(M,r)
2.Verifies signature on h.

Alice: 'Hello Bob'
>> M='Hello Bob'

M; =(r,s); a
M'; =(r,s); a

Non-Interactive Zero Knowledge Proof - NIZKP.
Alice using the scheme of Schnorr Signature can prove a knowledge of any other secret in one or other
way related with Discrete Exponent Function - DEF.
Let this secret is some integer i and then Alice using DEF computes so called Statement we denote by t
for her secret i:

 t = gi mod p.
In this scenario Alice is called a Prover.
Then Alice realizes a NIZKP of knowledge of i without revealing i by presenting this Statement t to the
Verifier Bob.

Mini-https

 `111_012 Mini-https v-2 Page 2

After receiving Tx and , Bob according to (2.20)
computes h
 h = H(C||r),
and verifies if

gs mod p = rah mod p.
 V1 V2

Symbolically this verification function we denote by

Ver(a,,h)=V{True, False}{1, 0}.
This function yields True if (2.22) is valid if:

PuKA= a =F(PrKA)= gx mod p

1. Mentor sends you Public Parameters (p=268435019; g=2) of 28 bits length.
Generate public and private keys PrKA=x and PuKA=a.
Send public key [a] to the Mentor.

>> a
a = 39794323

mod (p-1)

r = gj mod p

 `111_012 Mini-https v-2 Page 3

>> u=int64(randi(p))
u = 190442301
>> tA=mod_exp(g,u,p)
tA = 109819746
>>
>> i=int64(randi(p))
i = 236712983
>> r=mod_exp(g,i,p)
r = 117664796
>> con=concat(tA,r)
con = 109819746117664796
>> h=hd28(con)
h = 243151357
>> s=mod(i+x*h,p-1)
s = 114109665

2. Compute random secret number u of 28 bit length and compute session
public parameter tA. Sign tA with Schnorr signature scheme by computing
two signature components σA=(rA, sA). Send [tA,rA,sA] to the Mentor.

3. Mentor sends you (tB PuKB=32768, KB tB=209399419, R=101644938,
S=18011748). Verify Mentor's signature σM=(R,S) on tB. If signature is valid then
taking S compute verification parameter V1=gS mod p. Compute common
symmetric secret key k and transform k to the hexadecimal form kh of 32 digits
length as it is required for AES128 function. Create the string of message
variable m='MMDD' consisting of the month and day of your birth. Encrypt
message m using 1 round of AES128 cipher with key kh32 by computing ciphertext
>> C=AES128(m,kh32,1,'e'). Attention! Encryption using 1 round is extremely
insecure and is used there to speed up the computations and to make sure of its
insecurity. Insecurity is seen by comparing plaintext and ciphertext messages in
hexadecimal format. They have non-excrypted digits. C should be entered within ' '.
Send [V1,C] to the Mentor for decryption.

>> PuKB=int64(32768)
PuKB = 32768
>> tB=int64(209399419)
tB = 209399419
>> R=int64(101644938)
R = 101644938
>> S=int64(18011748)
S = 18011748
>>
>> con=concat(tB,R)
con = 209399419101644938
>> h=hd28(con)
h = 64128805

% Alice verifies her signature
>> g_S=mod_exp(g,S,p)
g_S = 20703551
>> V1=g_S
V1 = 20703551
V2 = 20703551

% Alice computes common
% symmetric secret key k
>> k=mod_exp(tB,u,p)
k = 63198998

% AES128(in,kh32,NR,fun) Advanced Encryption Standard symmetric cipher with key length of 128 bits
% Encryption is performed for 1 block of length 128 bits or 16 ASCII symbols
%
% in - plaintext/ciphertext of string type: maximum 16 symbols or shorter
%
% kh32 - shared secret key in hexadecimal number of length=32 (128 bits)
% kh32 can be obtained when shared decimal key k is given using commands:
% >> k=int64(randi(2^28))
% k = 160966896
% >> kh32=dec2hex(k,32)
% kh32 = 000000000000000000000000099828F0
%
% NR - Number of Rounds (e.g. Nr = 10)
% The smaller NR, the lower security of encryption but the speed of encryption is higher
% The least number of NR is 1 and in this case security lack is evident
%
% fun - letter determining either encription: fun='e' or decryption: fun='d' functions

>> kh32=dec2hex(k,32)
kh32 = 00000000000000000000000003C45716
>> m='1012'
m = 1012
>> NR=1

109819746,117664796,114109665

% Alice verifies her signature before sending to Mentor
>> g_s=mod_exp(g,s,p)
g_s = 254713335
>> a_h=mod_exp(a,h,p)
a_h = 85497572
>> V1=g_s
V1 = 254713335
>> V2=mod(r*a_h,p)
V2 = 254713335

 `111_012 Mini-https v-2 Page 4

>> NR=1
NR = 1
>> C=AES128(m,kh32,NR,'e')
new = ~8$M~8t ~�$ =�s
C = 7e38244d7e3874187ee424183dfc730e

20703551,'7e38244d7e3874187ee424183dfc730e'

4. Ok, let be informed that Mentor gets you a price for your birthday.
The sum of the price he is sending to you as a ciphertex
(CM='7e38245d7e38d8187e47241865fc730e'). Please decrypt and
check it and then encrypt it again with added string 'ok' right after the
sum by computing ciphertext C1.
Send [C1] to the Mentor. C1 should be entered within ' '.

>> CM='7e38245d7e38d8187e47241865fc730e'
CM = 7e38245d7e38d8187e47241865fc730e
>>
>> M=AES128(CM,kh32,NR,'d')
Out = 00000000000000000000000000003935
M = 95
>>
>> Mok='95ok'
Mok = 95ok
>> C1=AES128(Mok,kh32,NR,'e')
new = ~8$�~8@ ~�$ ��s
C1 = 7e3824847e3840187efa24189efc730e

'7e3824847e3840187efa24189efc730e'

Till this place

 `111_012 Mini-https v-2 Page 5

